Document 65
Lawrence Livermore National Laboratory

244Pu target manufacturing
January 14-16, 2008

Alex Hamza

Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551
This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

UCRL-XXXX-12345
We can make the required targets

Diamond-turned targets

Rippled target

Stepped target

We are extending our existing capabilities to build Pu targets

Lawrence Livermore National Laboratory
Using ^{244}Pu poses unique challenges

We are using ^{244}Pu because of its low specific radioactivity

- Material is currently in solution
 - We need metal
- Oxidation of metal needs to be controlled
 - We need inert atmospheres
- Total supply is 1 gram
 - We need to recover used material

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Relative radioactivity of available material</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{239}Pu</td>
<td>1</td>
</tr>
<tr>
<td>^{242}Pu</td>
<td>$1/14$ (8 grams available)</td>
</tr>
<tr>
<td>^{244}Pu</td>
<td>$1/64$ (1 gram available)</td>
</tr>
</tbody>
</table>

Further isotopic separation is not necessary

We are addressing these challenges

Lawrence Livermore National Laboratory
We have begun the development to produce metal at the milligram scale
We will process 244Pu ingots and produce fully assembled targets.

1. **Input: 244Pu metal**
 - Receive purified "ingots"
 - Size: ~2 mm

2. **Form a blank**
 - Re-melt metal, form near-net shape
 - Grain size refinement, polishing

3. **Shaping operations**
 - Manufacture parts with diamond turning lathe

4. **Layering and metrology**
 - Apply materials to back and front.
 - Polishing and interferometry

5. **Assembly**
 - Assemble final package

6. **Ship to experimental site**
 - Release part in a container for transport

Lawrence Livermore National Laboratory
Inert atmospheres are required for sample processing and target assembly

- A dedicated clean glovebox line is required
 - Equipment contaminated with 239Pu compromises the ES&H benefits of 244Pu

90% of target components can and will be built in existing facilities
244Pu recovery is a requirement

$\sim 100\%$ returned

Processing from solution yields 90% to metal

40% unused material from manufacturing is returned

Target manufacturing yields 60% of metal to target

Lawrence Livermore National Laboratory
We have made progress

We can diamond turn α-phase Pu

- [Graph showing raw data with annotations: Data filtered to remove machine noise. Surface finish (RMS) = 0.014 µm.]
- [Image showing a 2 mm scale with a surface finish.

We can control and characterize grain size

- [Image showing an area with a 0.01 mm scale.
- Average grain size = 23.8 µm.

- [Image showing another area with a 0.01 mm scale.
- Average grain size = 8.7 µm.

Lawrence Livermore National Laboratory
We plan to be producing targets in FY12

<table>
<thead>
<tr>
<th>FY08</th>
<th>FY09</th>
<th>FY10</th>
<th>FY11</th>
<th>FY12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glovebox design</td>
<td>Glovebox manufacture</td>
<td>Glovebox installation</td>
<td>Commission gloveboxes and equipment</td>
<td></td>
</tr>
<tr>
<td>Room construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Purchase/Install major equipment</td>
<td></td>
<td></td>
<td>Receive material</td>
</tr>
<tr>
<td>Pu micrometallurgy development</td>
<td>Metrology development</td>
<td>Coating process development</td>
<td>Target fabrication with surrogate material</td>
<td>Assemble Pu target and deliver</td>
</tr>
</tbody>
</table>
A detailed resource-loaded plan exists

- Approximate costs over 3.5 years
 - Hardware: $10 million
 - Process development: $5 million

244Pu target fabrication represents 25% of the total cost of the campaign
244Pu target production team

- Pyrochemistry
- Pu micrometallurgy
- Glovebox design
- Facility construction
- Target integration
Backup slides
We have expertise in processing small-scale Pu samples

- Crucible for microscale Pu melts
- Mechanical- and electro-polished surfaces

2.5 mm

8.3 mg δ Pu

1 mm
We are assessing Superblock as a possible location for the target facility

- Cost
 - No space charges in Superblock, but additional training costs incurred for workers
- Schedule
 - Superblock operates with limited hours, limited certified personnel
- Capabilities
 - Most small-scale actinide tools in Superblock are contaminated with higher-activity isotopes

The small amount of ^{244}Pu and its low activity allow us to work outside of Superblock

Lawrence Livermore National Laboratory
We have expertise in handling small Pu samples at LLNL

- We have capabilities for small-scale actinide work
- Development for ^{244}Pu micrometallurgy will be done with ^{239}Pu in existing facilities

<table>
<thead>
<tr>
<th>Sample</th>
<th>Dimensions</th>
<th>Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diamond anvil cell</td>
<td>20 - 200 μm disc, 10 - 30 μm thick</td>
<td>0.05 - 15 μg</td>
</tr>
<tr>
<td>EXAFS</td>
<td>3 mm disc, 15 μm thick</td>
<td>1.7 mg</td>
</tr>
<tr>
<td>Resistometry</td>
<td>5 mm x 5 mm, 10 μm thick</td>
<td>4 mg</td>
</tr>
<tr>
<td>Transmission electron microscopy</td>
<td>3 mm disc, 20 nm - 150 μm thick</td>
<td>< 17 mg</td>
</tr>
<tr>
<td>X-ray diffraction</td>
<td>3 mm disc, 150 μm thick</td>
<td>17 mg</td>
</tr>
<tr>
<td>Magnetic measurements</td>
<td>1 - 2 mm3</td>
<td>16 - 127 mg</td>
</tr>
<tr>
<td>Differential scanning calorimetry</td>
<td>3 mm x 2 mm cylinder</td>
<td>225 mg</td>
</tr>
<tr>
<td>Target (for comparison)</td>
<td>3-6 mm disc, 100 μm thick</td>
<td>14-56 mg</td>
</tr>
</tbody>
</table>
Parts will be characterized with interferometry

- Parallelism
- Flatness
- Thickness
- Step height, ripple dimensions
- 10 nm resolution

Zygo interferometer

Interferometer data from a rippled sample
We are improving electropolishing techniques for characterizing microstructure

Initial work

Mechanically- and electro-polished surfaces

Recent work
We plan to explore 3 pyrochemistry metallization routes

Pu solution → Ion exchange → Precipitation/Calcination → Fluoride → Fluorinate → Bomb reduction

Oxide → Direct Oxide Reduction → Metal Product

Li Reduction volatilization

Methods development with 242Pu will allow us to determine the best process path for 244Pu

Goal: high yield and high purity with minimal inclusions
Renovation of wet chemistry glovebox for pyrochemistry operations completed

Before: Wet chemistry glovebox
After: Pyrochemistry glovebox
Materials usage and recovery in production mode

- Available: 1g of 244Pu in solution
- Goal: Metal produced in lots of 100-500 mg
- Goal: Process time ~14 days

- Plan: 20 to 55mg per target
- Goal: Process time 180 days for 5 targets

- >99% material returned
- 20 Shots per year for 5 years

Pyrochemistry → Target Fabrication → Experiment

10% Return → 40% Return → ~100% Return
Sample recovery: The catcher

Requirements for the catcher

- Should be able to collect >99% of sample materials moving at velocities of up to 20 km/s
- Transparent to 58 keV backlighter
- Rugged housing
- Holding fixture from DIM90-45 image plate housing
- As close as possible to the sample
The degree of purity has to be determined by analytical methods.

We have demonstrated the ability to perform optical metallography on mg-sized specimens of α Pu and to characterize inclusions from the pyrochemistry.
Plutonium isotopes

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Half-life (years)</th>
<th>Specific Activity (Ci/g)</th>
<th>Decay mode</th>
<th>Radiation Energy (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>α</td>
</tr>
<tr>
<td>^{236}Pu</td>
<td>2.9</td>
<td>540</td>
<td>α</td>
<td>5.8</td>
</tr>
<tr>
<td>^{238}Pu</td>
<td>88</td>
<td>17</td>
<td>α</td>
<td>5.5</td>
</tr>
<tr>
<td>^{239}Pu</td>
<td>24,000</td>
<td>0.063</td>
<td>α</td>
<td>5.1</td>
</tr>
<tr>
<td>^{240}Pu</td>
<td>6,500</td>
<td>0.23</td>
<td>α</td>
<td>5.2</td>
</tr>
<tr>
<td>^{241}Pu</td>
<td>14</td>
<td>100</td>
<td>β</td>
<td>$<$</td>
</tr>
<tr>
<td>^{242}Pu</td>
<td>380,000</td>
<td>0.0040</td>
<td>α</td>
<td>4.9</td>
</tr>
<tr>
<td>^{244}Pu</td>
<td>83,000,000</td>
<td>0.000018</td>
<td>α</td>
<td>4.6</td>
</tr>
</tbody>
</table>

Lawrence Livermore National Laboratory
Isotopes of available materials

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Specific Activity (Ci/g)</th>
<th>Atomic %</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{244}\text{Pu})</td>
<td>0.000018</td>
<td>98.6701</td>
</tr>
<tr>
<td>(^{242}\text{Pu})</td>
<td>0.0040</td>
<td>0.9949</td>
</tr>
<tr>
<td>(^{241}\text{Pu})</td>
<td>100</td>
<td>0.0133</td>
</tr>
<tr>
<td>(^{240}\text{Pu})</td>
<td>0.23</td>
<td>0.3143</td>
</tr>
<tr>
<td>(^{239}\text{Pu})</td>
<td>0.063</td>
<td>0.0060</td>
</tr>
<tr>
<td>(^{238}\text{Pu})</td>
<td>17</td>
<td>0.0013</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Specific Activity (Ci/g)</th>
<th>Atomic %</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{242}\text{Pu})</td>
<td>0.0040</td>
<td>99.958</td>
</tr>
<tr>
<td>(^{244}\text{Pu})</td>
<td>0.000018</td>
<td>0.002</td>
</tr>
<tr>
<td>(^{241}\text{Pu})</td>
<td>100</td>
<td>0.01</td>
</tr>
<tr>
<td>(^{240}\text{Pu})</td>
<td>0.23</td>
<td>0.022</td>
</tr>
<tr>
<td>(^{239}\text{Pu})</td>
<td>0.063</td>
<td>0.005</td>
</tr>
<tr>
<td>(^{238}\text{Pu})</td>
<td>17</td>
<td>0.003</td>
</tr>
</tbody>
</table>
Isotopics of available materials

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Atomic %</th>
<th>Radioactivity in 1 g of solution (Ci)</th>
</tr>
</thead>
<tbody>
<tr>
<td>244Pu</td>
<td>98.6701</td>
<td>1.776×10^{-5}</td>
</tr>
<tr>
<td>242Pu</td>
<td>0.9949</td>
<td>3.947×10^{-5}</td>
</tr>
<tr>
<td>241Pu</td>
<td>0.0133</td>
<td>1.316×10^{-2}</td>
</tr>
<tr>
<td>240Pu</td>
<td>0.3143</td>
<td>7.112×10^{-4}</td>
</tr>
<tr>
<td>239Pu</td>
<td>0.0060</td>
<td>3.730×10^{-6}</td>
</tr>
<tr>
<td>238Pu</td>
<td>0.0013</td>
<td>2.237×10^{-4}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Atomic %</th>
<th>Radioactivity in 1 g of solution (Ci)</th>
</tr>
</thead>
<tbody>
<tr>
<td>242Pu</td>
<td>99.958</td>
<td>3.998×10^{-3}</td>
</tr>
<tr>
<td>244Pu</td>
<td>0.002</td>
<td>3.630×10^{-10}</td>
</tr>
<tr>
<td>241Pu</td>
<td>0.01</td>
<td>9.959×10^{-3}</td>
</tr>
<tr>
<td>240Pu</td>
<td>0.022</td>
<td>5.018×10^{-5}</td>
</tr>
<tr>
<td>239Pu</td>
<td>0.005</td>
<td>3.111×10^{-6}</td>
</tr>
<tr>
<td>238Pu</td>
<td>0.003</td>
<td>5.016×10^{-4}</td>
</tr>
</tbody>
</table>
Fluoride reduction: metallothermic (bomb) reduction

- The reaction is performed in an inductively heated pressure vessel in a non-vitrified crucible
 - Non-vitreous crucible necessary to withstand the sharp temperature rise caused by the large heat of reaction
- The reaction reaches high enough temperatures to melt the calcium fluoride slag that is formed in the reaction allowing the product metal to coalesce into a metal button

\[
2\text{Ca} + \text{PuF}_4 \rightarrow \text{Pu}^0 + 2 \text{CaF}_2 \quad \text{with iodine initiator}
\]

or

\[
2\text{Ca} + \frac{1}{4} \text{PuO}_2 + \frac{3}{4} \text{PuF}_4 \rightarrow \text{Pu}^0 + \frac{3}{2}\text{CaF}_2 + \frac{1}{2} \text{CaO}
\]
Fluoride reduction: preparation of PuF$_4$

- Plutonium tetrafluoride is prepared by several methods, including:
 - Fluorination of plutonium peroxide with HF gas through a platinum frit
 - Fluorination of low fired plutonium dioxide with HF gas through a platinum or Inconel frit
 - Precipitation of plutonium trifluoride by HF and then the subsequent conversion of the PuF$_3$ to 3/4PuF$_4$ and 1/4PuO$_2$ by drying

Lawrence Livermore National Laboratory
Direct oxide reduction

PuO$_2$ + 2Ca0 → Pu0 + 2CaO (sol'n in CaCl$_2$)

- PuO$_2$ is reduced to metal by direct oxide reduction (DOR)
 - Primary reaction takes place in molten CaCl$_2$ at ~900°C
 - Reaction is spontaneous with $\Delta G^0_r = -47$ kcal/mole PuO$_2$
Lithium reduction

\[\text{PuO}_2 + 4 \text{Li} \rightarrow \text{Pu}^0 + 2\text{Li}_2\text{O} \]

- \(\text{PuO}_2 \) is reduced by lithium vapor to produce Pu metal
 - Lithium oxide formed in the reaction can be removed in vacuum at temperature
 - \(\text{Li}_2\text{O} \) will volatilize away from the Pu metal under vacuum after the reaction is completed

Lawrence Livermore National Laboratory
Metal preparation recovery:
sustainability of program

- Recovery methods
 - Bomb reduction residues are primarily calcium fluoride slag and MgO crucible. These can be dissolved in nitric acid and aluminum nitrate to complex the fluoride
 - DOR residues are the calcium chloride salt and the MgO crucible. This material can be recovered by HCl dissolution
 - Li reduction residues require flow-sheet development. This method could result in minimum inclusions
- All processes can be followed by ion exchange and precipitations